Symmetric Generalized Galois Logics
نویسندگان
چکیده
Symmetric generalized Galois logics (i.e., symmetric gGls) are distributive gGls that include weak distributivity laws between some operations such as fusion and fission. Motivations for considering distribution between such operations include the provability of cut for binary consequence relations, abstract algebraic considerations and modeling linguistic phenomena in categorial grammars. We represent symmetric gGls by models on topological relational structures. On the other hand, topological relational structures are realized by structures of symmetric gGls. We generalize the weak distributivity laws between fusion and fission to interactions of certain monotone operations within distributive super gGls. We are able to prove appropriate generalizations of the previously obtained theorems—including a functorial duality result connecting classes of gGls and classes of structures for them. Mathematics Subject Classification (2000). Primary 03B47;
منابع مشابه
A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملOn the Galois Group of generalized Laguerre polynomials
Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed α ∈ Q−Z<0, Filaseta and Lam have shown that the nth degree Generalized Laguerre Polynomial L (α) n (x) = ∑n j=0 ( n+α n−j ) (−x)/j! is irreducible for all large enough n. We use our criterion to show that, under these conditions, the Galois group of L (α) n (x) is...
متن کاملEQ-logics with delta connective
In this paper we continue development of formal theory of a special class offuzzy logics, called EQ-logics. Unlike fuzzy logics being extensions of theMTL-logic in which the basic connective is implication, the basic connective inEQ-logics is equivalence. Therefore, a new algebra of truth values calledEQ-algebra was developed. This is a lower semilattice with top element endowed with two binary...
متن کاملDesign and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois
Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Logica Universalis
دوره 3 شماره
صفحات -
تاریخ انتشار 2009